JEDNOGODISNJE CIKLICNE PROMJENE U TOKU OVOGENEZE SERRANUS SCRIBA (TELEOSTEI)*

Karlo MERKER

Zavod za biologiju mora i oceanografiju - Kotor
Sinopsis

Istraživanja cikličnih promjena u jajnicima tretirano je na 63 primjerka Serranus scriba izlovljenih u Tivatskom zalivu.

U radu je obraden gonosomatski indeks u toku razvića prije polne zrelosti i u raznim fazama polnog ciplusa. Ukazano je na bitne karakteristike vitelogeneze i parcijalnog mrijesta.
Synopsis

EINJAEHRIGE ZYKLUSVERAENDERUNGEN IM OVARIUM SERRANUS SCRIRA (TELEOSTEI)

[^0]
UVOD

Staino prisustvo muških i żenskih polnih zzlijezda tokom čitavog životnog ciklusa u Serranus scriba odlika je ove vrste Teleostea. Pojava protandričnosti je inače manje-više značajna za one vrste koje se ubrajaju u familie Sparidac i Serranidae, a koje u kasnijim fazama životnog ciklusa mijenjaju pol (inverzija pola).

Odlike hermafroditizma predstavljaju interesantno područje za jstraživanja fundamentalnog karaktera.

[^1]Na nekim morskim vrstama riba istraživači su svoju problematiku vezali za endokrinološka proučavanja (F ebvre i Lafaurie, 1971), dok su drugi proučavali migratorna svojstva kao eksponent promjena, koje se javljaju u toku polne zrelosti (Lahaye, 1960, 1962. i 1972).

Slična problematika, vezana za ciklične promjene gonoda tretirana je i kod nas isključivo na slatkovodnim vrstama (J anković, 1958. i 1960, Ivanovíc, 1969).

MATERIJAL I METODIKA ISTRAZZIVANJA

U okviru endokrinoloških istraživanja (Pantić i Lovren, 1973) izučavane su promjene u toku jednogodišnjih cikličnih promjena gonada Serranus scriba te je za ova istraživanja korišćen isti materijal. Životinie su izlovliene povlačnom mrežom (kočom) u infralitoralnoj zoni Bokokotorskog (Tivatskog) zaliva. na karakterističnom biotopu Serranus scriba vezano za biocenozu Posidonia, na dubini od 3-12 metara. Od ukupnog materijala upotrebljene su 63 individue. Pošto je prethodno izmjerena totalna dužina i težina tijela, na osnovu krljušti determinisana je starost.

Izolovane gonade su mjerene težinski i fiksirane u Bouinovoj tečnosti.

Histološki presjeci gonada, debljine u prosjeku 8 mikrona, bojeni su haematoxylin-cozinom, a ispitivanja su vršena koristeći svjetlosni mikroskop »Opton«.

Mikroskopska mjerenja vršena su okularnim mikrometrom, uz primjenu mrežastog okularnog mikrometra. Mrežasti mikrometar služio je za odredivanje broja jajnih celiia u ispitivanim stadijumima polnog ciklusa, na površini od 7225 mikrona kvadratnih.

CILJ ISTRAŽIVANJA

Zadatak istraživanja je bio da se ustanove karakteristične promjene na polnim žlijezdama ove vrste u toku jedne godine ito: da se izradi gonosomatski indeks po mjesecima u toku godine; da se doprinese poznavanju odnosa veličine i gustine jajnih ćelija (ovogonija i ovocita) u životinja razne dužine, odnosno starosti; da se odredi vrijeme prve polne zrelosti u toku životnog ciklusa i prati uticaj ekolos̀kih faktora u procesu pojave i završetka mriješćenja.

[^2]
REZULTATI I DISKUSIJA

Ciklićne promiene u gonadama

1. Gonosomatski indeks

Sve promjene u procesu sazrijevanja polno zrelih životinja odvijaju se u jednogodišnjem ciklusu. Stoga sve promjene u pogledu cikličnog sazrijevanja ovocita ukazuju da se ovdje radi manje-više o

S1. 1 - Prikaz gonosomatskih indeksa sa gustinom jajnih celija u toku jedne godine. Relativni odnos težlne gonada prema težini tijela (RGS); prosječni broj ovocita (- - -); prosjeट̃ni broj ovogonija (. . .).

Abb. 1 - Gonosomatischer Index im Verlaufe eines Jahreszyklus. Relatives Verhältnis zwischen Gonadengewicht und Körpergewicht (R G S); mittlere Zahl der Oozyten (- -); und mittlere Anzahl der Oogonlen (. . .).
tri različite karakteristične faze koje predstavljaju u ovom procesu kontinuiranost. Svakako da vremenski proces sazrijevanja pokazuje izvjesna odstupanja u pogledu godišnjih doba i da postoje individualna variranja u pojedinih jedinki.

Relativna plodnost, odnos težine gonada i težine tijela, ukazuje da je najveći koeficijent (indeks) u ljetnim mjesecima (jun, jul). Rezultati dobijeni histoloskkom analizom gonada pokazuju da je najveća gustina celija ovocita u petom stadijumu zrelosti tj. neposredno pred ovulaciju (sl. 1).

Pri tome se usljed atrofičkog rasta povećava dijametar jajne celije četvrtog i petog stadijuma. Nasuprot tome broj, odnosno gustina, na jedinici površine ovogonija i ovocita je smanjen.

Relativna plodnost opada ili stagnira sa godinama života, a najmanje vrijednosti su do sada uočene u ispitivanim životinjama od $22,0 \mathrm{~cm}$ dužine (sl. 2). Histološka analiza jajnih ćelija III, IV, V stadijuma u razdoblju mriješćenja od V-IX mjeseca, pokazuje da se dijametar ovocita povećava sa tjelesnom dužinom, a da je manji u životinja mlađeg uzrasta, odnosno kraće dužine.

Suprotno tome, prosječna gustina jajnih ćelija (ovocita i ovogonija) u individua pri pojavi prve polne zrelosti, tj . u trećoj godini (dužina tijela veća od $12,0 \mathrm{~cm}$) dostiže maksimalan broj jajnih ćelija po jedinicí površine. Dimenzije jajnih celija su veće ukoliko je životinja starija.

S. 2 - Odnos težine tijela prema dijametru jajnih éclija u periodu mrijes̉ćenja (od maja do septembra) u stupnju zrelosti ovocita u III, IV i V stadijumu, , prosjeexna gustina ovogonija i ovocita iarażena na jedinici povrs̆ine (7225 mikr. ${ }^{\text {ºn }}$).
Abb. 2 - Verhāltnis von Körpergewicht / Eidurchmesser während der Laichperiode (Mai bis September) bei verschiedenen Reifestadien der Oozyten 111 , IV und V, sowle die durchschnittliche Dichte der Oogonien und Oozyten (bezogen auf die ausgezählte Flacheneinheit von $7225 \mathrm{~mm}^{7}$).

2. Jajnicl polno nezrelih životinja

(stadijum II)

Prva ovulacija u Serranus scriba nastaje u trećoj godini života. Dužina tijela polno zrelih životinja je veća od $12,0 \mathrm{~cm}$. U toku histološke analize gonada primjeraka dužine između 11,0 i $12,0 \mathrm{~cm}$ izlovljenih septembra mjeseca ustanovljeno je da postoje jajne ćelije većih dimenzija ($34,88-56,10 \mu \pi)$ i da se nalaze u početnoj fazi regresije (sl. 3 i 4).

Histološke promjene koje se uočavaju u jajnicima životinja u toku jedne godine podijelili smo, s obzirom na rast i promjenu strukture jajnih celija, na 4 odnosno 5 stadijuma.

Postoji veliki broj jajnih ćelija koje su u fazi regresije u životinja od 8,9 i $12,0 \mathrm{~cm}$, mada u ove jedinke nije postojala faza potpunog sazrijevanja, tj. jajne ćelije nijesu dostigle V stupanj zrelosti ovocita. Iznimno prvu pojavu polnog sazrijevanja u toku životnog ciklusa zapazili smo samo kod jednog primjerka od $10,0 \mathrm{~cm}$ u maju mjesecu. Pošto se radi o malom broju primjeraka, što u svakom slučaju može da predstavlja individualno odstupanje, smatramo da prva ovulacija kod većine primjeraka nastupa u trećoj godini života.

3. Jajnicl polno zrelih životinja

a) Previtelogeneza (stadijum III)

Previtelogeneza je obilježena sa porastom u veličini nukleusa i nukleola. Za vrijeme ove faze citoplazma je manje više vakuolarizirana. Debljina zone pelucide je takođe povećana i dostiže maksimalan promjer od 25 mikrona. Veličina jajnih ćelija je promjera 83-124 mikrona (sl. 5).

b) Vitelogeneza (stadijum IV)

Vitelogeneza počinje uvijek u ovocitima prosječnog dijametra 190-250 mikrona. Sitne granule su očevidno na periferiji citoplazme. Za vrijeme kasnijih faza rastu i raspodijeljene su po čitavoj citoplazmi prema nukleusu u skoro koncentričnim naslagama. Sa formacijom vitelusnih granula (sl. 6) one se akumuliraju i nastaju krupne granule.
c) Sazrijevanje ovocita, stanje prije ovulacije (stadijum V)

Za vrijeme ove faze promjer ovocita je maksimalan i iznosi preko 342 mikrona. Vitelusne granule postaju više akumulirane pre-
ma nukleusu i ispunjene su citoplazmom (sl. 6). Zona pelicida postaje dvoslojna i izrazito je bazofilna. Takve folikularne celije se nalaze u stadijumu ovulacije.

d) Regresija ovocita i početni stadijum ovogeneze (stadijum VI i II)

Ovociti u promjeru 28-33 mikrometra, maksimalno 44-73 $\mu \mathrm{m}$ veličine nukleusa od 11-12 $\mu \pi$, dominiraju u individuama koje nijesu polno zrele. Medutim, sitni ovociti skoro istog promjera, su takođe zastupljeni sa nešto većim brojem u polno zrelih primjeraka. U periodu od avgusta do februara konstatovan je veliki broj jajnih ćelija koje nijesu odložene u periodu mriješćenja i u njima se uočavaju regresivne promjene (sl. 8).

Ovo stanje jajnika sa izrazitom dominacijom folikula u stadijumu resorpcije označeno je kao stadijum VI. Sem toga, zapaža se i prelaz ostalih juvenilnih folikula u stadijum II koji je označen kao početak diferencijacije ovocita (I vanović, 1969).

Degeneracija izvjesnog broja ovocita u jajnicima može nastati istovremeno sa sazrijevanjem drugih ovocita, zrelih stadijuma u životinja sa sinhronizovanim polaganjem ikre. Zapazili smo da se pri najvećoj gustini ovocita, neposredno pred ovulaciju (avgusta mjeseca), nalaze jajne ćelije u resorpciji.

ZAKLJUCAK

Ispitivanja gonosomatskog indeksa i cikličnih promjena u jajnicima 63 primjerka Serranus scriba, izlovljenih u Tivatskom zalivu, pokazala su slijedeće:

Serranus scriba je stalni hermafrodit sa parcijalnim mrijestom u toku jednogodišnjeg polnog ciklusa. U toku ciklusa razlikujemo 4-5 stadijuma ovogeneze i regresiju (VI stadijum) koji se manje više kontinuirano nastavlja u toku godine. Period mriješćenja počinje maja i traje do septembra mjeseca. Najveći gonosomatski indeks je u junu-julu mjesecu, i u tom vremenu su zastupljeni sa relativno najvećom brojnošću folikuli V stadijuma. Nasuprot tome, zbog velikog atrofičkog rasta jajnih ćelija, ovocita mlađih stadijuma u vremenu mriješéenja se brojno smanjuje po jedinici površine. Prva polna zrelost nastupa uglavnom u trécoj godini Relativna plodnost primjeraka većih dužina (starijeg uzrasta) opada, brojnost ovocita na jedinicu površine se smanjuje, a dijametar jajne celije u stadijumima III, IV i V se povećava. U polno nezrelih životinja i u jedinki poslije mriješćenja, broj jajnih celija po jedinici površine dostiže maksimum.

Jebvre, M. et Lafaurie, M. 1971: Le lobe distal de L'hipophyse de Serramus seriba LINNE et Serranus cabrila LINNE castrés et action du mohobenzoat d'oestradiol. Vie et Milieu, 22 (1) A, 213-230. Paris.
Ivanović, B. 1969: Cametogeneza Pachychilon pictum (Heckel et Kner). Zbornik radova, 2, (53-53), Titograd.
Janković, D. 1958: Ekologija dunavske kečige (Acipenser ruthenus L.). Biološki institut NR Srbije, Posebna izdanja, knj. 2, Beograd.
Jankovlć, D. 1960: Sistematika i ekologija lipljena Jugoslavije. Bioloski institut Beograd, Posebna izdanja, knj. 2, Beograd.
Lahaye, J. 1962: Croissance et maturation des ovocytes chez la forme totalment adaptée aux eaux douces de l'alose marocaine (Alosa alosa LINNE). Rev. Trav. Pêches marlt., 24 (4) 499-511, Paris.
Lahaye, J. 1962: L'Ovogénése chez Alosa finta. Rev. Trav. Inst. marit., (4), 457-465, Paris.

Lahaye, J. 1972: Cycles sexuels de quelques poissons plats des cottes bretonnes. Rev. Trav. Inst. Péches marit., 36 (2), 191-207, Nantes.
Sckulović, T. i Ivanović, B. 1969: Godišnji ciklus razvića ovogonija Leuciscus cephalus albus u Skadarskom jezeru. Zbornik radova, 2, 53-58, Titograd.

EINJAEHRIGE ZYKLUSVERAENDERUNGEN IM OVARIUM SERRANUS SCRIBA (TELEOSTEI)

Karlo MERKER

Zusammenfassung

Die Veränderungen im Eierstock von Serranus scriba im Verlaufes des Reifesyklus wurde anhand der Bestimmung des gonosomatischen Indexes verfolgt. Die Untersuchungen an 63 Exemplaren, die in der Bucht von Tivat gefangen worden sind, haben zu folgenden Ergebniessen gefürt:

Serranus scriba ist ein ständiger Hermafrodit mit Partiallaichen im laufe eines einjährigen geschlechtscyklus. Man kann 4 bis 5 Stadien der Oogenese unterscheiden (Stadium I, 11,22 bis 33,60 mikr.; Stadium II, 34,88 bis 56,10 mikr.; Stadium III, 83,49 bis 123,42 mikr.; Stadium IV, 190,76 bis 251,92 mikr.; Stadium V, 253,12 bis 342,21 mikr., laichreife). Nach dem laichen erfolgt eine deutliche Rückbildung der gonaden (Stadium VI). Die Laichperiode ist langgestreckt; sie beginnt im Mai und dauert bis zum September. Der grösste gonosomatische Index kann in den Monaten Juni-Juli beobachtet wer-
den und erreicht Werte z wischen 2,49 und 2,98. In dieser Zeit sind Oociten des Stadium V (laichreif) in den Gonaden zahlenmässig am häufigsten vertreten. Fbenfalls im Juni-Juli vermindert sich die Zahl der Oozyten aufgrund der Zunahme der reifen Eizellen significant. Die Geschlechtsreifen tritt in der Regel im Laufe des dritten Lebensjahres ein. Die relative Fruchtbarkeit nimmt mit dem Alter der Tiere ab. Sowochl bei unreifen Tieren als auch bei ausgelaichten Individuen erreicht die Zahl der Eizellen ihr Maximum von 84,9 bis $339,9 / \mathrm{mm}^{2}$ (die Anzahl der Oocyten wurde unter dem Binokular auf einer Fläche von $7225 \mathrm{~mm}^{2}$ ausgezält und pro mm^{2} ausgerechnet).

PRILOZ I

Sl. 3 - Jajnik polno nezrelog primjerka izlovljenog u septembru, dužlne 8,9 cm. U jajniku se nalaze rljetki ovociti u regresiji. Uveličanje $192 \times$.

Abb. 3 - Eierstock eines unreifen Exemplars (Fang September). Totallänge $8,9 \mathrm{~cm}$. (192 fach vergrösst). Oozyten in Resorption sind in unreifen Tieren selten zu finden.

S1. 4 - Jajnik polno nazrelog primjerka dužine tijela $11,6 \mathrm{~cm}$, izlovljenog u oktobru. Veci broj ovogonija i ovocila nalaze se u početnoj fazi regresije. Uveliéanje $75 \times$.

Abb. 4 - Eierstock eines unreifen Tieres (Fang Oktober). Totallinge $11,6 \mathrm{~cm}$. Zahlreiche Oogonlen und Oozyten sind in der Anfangsphase der Resorption
(75 fach Vergrössert).

Sl. 5 - Jajn'k primjerka izlovljenog u aprilu, tjelesno dužine $13,9 \mathrm{~cm}$. Oko ovocita u razn'm fazama rasta nalaze se follkularne ćellje. Citoplazma je vakuolizirana kod krupnith ovocita (previtelin! stadijum), zona pelicida je deblifne 25 mikr. Uveličanje $75 \times$.

Abb. 5 - Elerstock elnes relfen Tlers (Fang April). Totallänge $13,9 \mathrm{~cm}$. Die Oozyten sind in den versch!edenen Wachtumsphasen stets von Follkularzellea umgeben. Das Zytoplasma Ist bel grJ̈sseren Oozyten bereits vakuolisiert (pzïvitellines Stadium). Die Pelicid - Zone hat elne Wandstarke voz 25 M.kr. (75 fach vergrössert).

SL. 6 - Jajnik primjerka ulovljenog u maju, tjelesne dužine $16,4 \mathrm{~cm}$. Ovociti u stadijumu vitelogeneze, zona pellcida dvoslojna, Uveliéanje $192 \times$.

Abb, 6 - Eierstock eines im April ausgefischten Exemplars, Totallänge $16,4 \mathrm{~cm}$. Die Oozyten befinden sich im Stadium der Vitellogenese, die Pelicid - Zone ist zweischichtig (192 fach vergrössert).

Sl. 7 - Jajnik primjerka starijeg godišta, duz̃ine $18,5 \mathrm{~cm}$, ulovljenog u avgustu mjesecu. Na presjeku se vide ovociti u V stadijumu, neposredno pred ovulaciju. Uveliěanje $75 \times$.

Abb. 7 - Eierstock eines alteren Tieres (Fang August). Totallänge $18,5 \mathrm{~cm}$. Die im Querschnitt sichtbaren Oozyten des Stadium V befinden sich unmittelbar vor der Ovulation (75 fach vergrössert).

S1. 8 - D'o jajn'ka i sjemen 'ka pr'mjoraka izlovljenog februara u trećoj godini starost', duž'ne ed $13,4 \mathrm{~cm}$. U dijelu ovarijuma se nalaze folikuli u resorpciji. Uveličanje $75 \times$.

Abb. 8 - Telanstcht des Eierstock e'nes dreijährigen Tieres (Fang Februar). Taotallänge $13,4 \mathrm{~cm}$. Foll elzellen befinden sich tellweise in Resorption (75 fach vergrössert).

[^0]: Die Veränderungen im Eierstock wurden tretiert auf 63 Exemplaren von Serranus seriba ausgefischt in der Bucht von Tivat.

 Die Absicht dieser Arbeit ist den gonosomatischen Index im Laufe der Entwicklung vor der Geschlechtsreife, sowie in verschiedenen Stadien des Refezyklus zu verfolgen. Es wurden wesentliche Charakteristiken von Vitalogenese und Partialleichen hervorgehoben.

[^1]: * Rad referisan u Sarajevu na ihtiološkom kongresu, 1973.

[^2]: Zel'm da se zahval'm saradn'clma Odjeljenja za citologiju - Institata za b'ološka istraživanja, Beograd, za tehn!čki obrađenl materijal kojl sam ovdje koristio.

